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ABSTRACT

Infections caused by Staphylococcus aureus are currently a worldwide threat affecting millions of in-
dividuals. The pathogenicity of S. aureus is associated with numerous virulence factors, including cell
surface proteins, polysaccharides, and secreted toxins. The pore-forming α-hemolysin, known as
α-toxin, is produced by nearly all virulent strains of S. aureus and is implicated in several diseases
including skin and soft tissue infections, atopic dermatitis, and pneumonia. There are currently no
vaccines available for the prevention of S. aureus infections and the efficacy of available antibiotics has
been fading. In this study we examined the mode of antihemolytic activity of theaflavin-3,30-digallate
against α-hemolysin of methicillin-resistant S. aureus by molecular docking using AutoDock Vina
as the molecular docking tool. The theaflavin-3,30-digallate docked the molecular sequence of the
Hla (PDB ID:7ahl). The scores of the top 10 binding modes obtained were between �9.0 and
�8.5 kcal mol�1, and the best binding mode was�9.0 kcal mol�1. Direct binding sites of theaflavin-3,30-
digallate to the “stem” domain of Hla were revealed which primarily targeted of the residues Met113,
Thr117, Asn139. The disclosure of this potential binding mode warrants further clinical evaluation of
theaflavin-3,30-digallate as an anti-hemolytic compound in order to practically validate our results.
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INTRUDUCTION

Staphylococcus aureus (S. aureus) is a Gram-positive bacterium identified as an important
cause of infection in hospitals and in communities worldwide (1). Its ubiquitous presence is
also considered as being highly virulent in medical and non-medical settings, and mainly
associated with skin and soft tissue infections (SSTI), sepsis and pneumonia (2). High
virulence of S. aureus strains is in part related to expression of phenol soluble modulins
(PSMs) and alpha-hemolysin (α-hemolysin, α-toxin, Hla) as virulence factors (3). Hla is a
pore-forming exotoxin with cytolytic activity toward various cell types, such as keratinocytes,
epithelial cells, erythrocytes and leucocytes, and is lethal to animals like rodents and rab-
bits (4).

Hla is secreted as a water-soluble, 34 kDa monomer that binds to lipid parts of host cell
membranes, which subsequently undergoes oligomerization resulting in membrane-inserted
heptameric 238 kDa form that generates membrane pores about 2 nm in diameter (5). The
amino acid sequence of Hla revealed that this protein contains no cysteine but has an
abundance of glycine residues (6). The structure of Hla resembles the mushroom-shaped
homo-oligomeric heptamer, comprising protomers of 100 Å in length and 100 Å in diameter,
with three distinct domains: cap, rim, and stem. The stem domain (52 Å in length, 26 Å in
diameter) is a 14-strand anti-parallel β-barrel that outlines the lytic transmembrane channel.
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The interior of the β-barrel is primarily hydrophilic, while its
exterior has a hydrophobic belt. The cap domain
(comprising β sandwiches and amino latches of each pro-
tomer) is a hydrophilic domain that overhangs from the
extracellular surface. The rim domain extends from the
underside of the cap domain in proximity to the outer leaflet
of the cell membrane.

Theaflavins is a common class of flavonoids abundant in
black tea (7). They demonstrate a variety of metabolic ef-
fects, such as anti-carcinogenic, anti-septic, anti-diabetic,
and have anti-oxidative properties (8). Our recent study
documented the effect of theaflavin-3,30-digallate (TF3) on
the activity, production, secretion of Hla by S. aureus
USA300. TF3 as a natural dietary flavonoid, accounts for
about 40% in black tea with multiple biological activities,
including anti-inflammatory, antioxidant, antiviral, and
antibacterial characteristics (9). We found that TF3 have
anti-hemolytic effect protecting keratinocytes against Hla-
triggered cell death and inflammation. Its effect on skin
barrier function while beneficial in relieving skin injury
occurs without affecting S. aureus growth or viability, thus
not exhibiting direct anti-S. aureus activity, which could
slow the progress of antibiotic resistance (10).

Pharmacokinetic and pharmacodynamic studies con-
ducted earlier indicate that nano-formulation of TF3 could
increase its bioavailability and thus be an attractive candi-
date for further study against S. aureus infections. Also, the
combination of TF3 with the inhibitors of Hla, could form a
first-line approach for the treatment of S. aureus infections
as well (11). Here we investigated the molecular mechanism
of TF3 binding to Hla that could corroborate our earlier
findings and eventually form the foundation for further
therapeutic applications and study.

MATERIAL AND METHOD

Structure preparation

The molecular sequence of the Hla (PDB ID:7ahl) was
downloaded from the protein database (www.rcsb.org).

Ligand preparation

The three-dimensional structure of TF3 in sdf format was
downloaded from pubchem (https://pubchem.ncbi.nlm.nih.
gov/compound/135403795) and OpenBabel was used to
convert it into a mol2file for further processing (12).

Molecular modeling

In this study, AutoDock Vina was selected as the mo-
lecular docking tool (13). MGLTools 1.5.6 was used to
add hydrogens and give Kollman charge for the protein
from 7ahl, then the 7ahl.pdbqt file was generated as a
receptor file. With reference to the compound structure of
3m4e, a complex structure of S. aureus Hla and beta-
cyclodextrin, the center coordinates of the docking box x,
y, z were defined as 35.5, 31, 26 based on the binding

position of beta-cyclodextrin, and the box size was set to
303 30 3 30 Å, to contain the entire pocket area. The
ligand_prepare.py script in the molecular docking package
was used to deal with the mol2 file of the ligand TF3. The
flexible bond was set by default, and Gasteiger charge was
added to generate the ligand pdbqt file. The exhaustive-
ness value of the search parameter was set to 10 and
defined to output top 10 ranking conformations according
to docking scores. The default values were selected for the
rest of the parameters.

RESULTS AND DISCUSSION

Evaluation of the binding of TF3 to the Hla via molecular
docking revealed the direct interaction between TF3 and
Hla. From the view of the heptamer down, TF3 is wrap-
ped in the Hla binding pocket and possesses a large
contact surface with Hla residues (Fig. 1A). Further
binding mode analysis showed that TF3 binds within the
stem domain of S. aureus Hla, forming hydrophobic in-
teractions and hydrogen bonds with multiple residues on
the protein.

The scores of 10 binding modes of TF3 with S. aureus
Hla obtained by molecular docking are shown in Table 1.
The Vina docking score was based on the experimental
binding free energy value as the fitting object, and the unit
was kcal mol�1. The scores of the top 10 binding modes
were between �9.0 and �8.5 kcal mol�1, and the best
binding mode was �9.0 kcal mol�1.

Several hydrogen bonds were found to be formed be-
tween the hydroxyl groups of TF3 and the residues in the
stem domain of S. aureus Hla, such as Asn139, Phe120,
Thr117 from chain B, Thr115, Asn139, Val140 from chain
C, Thr117, Ser141 from chain D, and The145 from chain
E. At the same time, TF3 forms hydrophobic interactions
with Met113, Thr117, Asn139, Val140, Ser141 from chain C,
Met113, Thr115, Ile142 from chain D, and Gly143 from
chain E (Fig. 1B-C). From the view of the heptamer paral-
lelly to the sevenfold axis, Asn139/Met113/Thr117 binding
residues overhang the cylindrical channel of Hla, and thus
may play important roles in the hemolytic activity of Hla,
and are the target binding sites for TF3, in turn stabilizing
the binding cavity of Hla and affecting its lytic activity.
This demonstrated binding mode could reveal the molecular
basis for the biological activity of TF3 against Hla.

The impact of Hla on the severity of S. aureus infections
are largely recognized, since this toxin is a highly conserved
virulence factor in S. aureus and highly available to the
immune system (14). Based on the findings presented here,
TF3 is projected to bind to “stem” of Hla. This part of Hla
is recognized as directly involved in the pore-forming
process and detrimental for the hemolysis process and
hemolytic activity of this toxin per se. Interestingly, Ragle
et al. have reported about Hla modified β-cyclodextrin
compound preventing Hla-induced lysis of human alveolar
epithelial cells, but not the formation of the heptameric Hla
(15). Studies of Wang et al. demonstrated that myricetin, a
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Fig. 1. Binding of TF3 to Hla of S. aureus. (A). Binding mode distribution of TF3 within Hla from top view. Heptameric Hla is represented
by the green cartoon model, and TF3 is represented by the orange stick model. (B) Best binding mode of TF3 from top view (left panel) and
side view (right panel) where Hla is shown in cartoon model (B chain in blue, C chain in purple, D chain in yellow, and E chain in pink),
and TF3 is shown in orange stick models (C in orange and O in red). The residues within 4Å nearby TF3 are depicted in stick models, and
hydrogen bonds are shown by yellow dashed lines. (C) Schematic representation of hydrogen and electrostatic binding interactions of TF3

with particular residues on the “stem” of Hla
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natural flavone, inhibits Hla hemolytic activity and pre-
vents S. aureus-mediated cell injury (16). Similarly, Wang
et al. published findings showing that curcumin also has
anti-hemolytic properties and targets the “stem” region of
Hla (17). In addition, Dong et al. reported that inhibition of
Hla production by apigenin leads to protection of lung cells
from the Hla-induced injury (18). Finally, Gua et al. pub-
lished a study about honokiol, a natural polyphenol, that
reduces secretion of Hla by S. aureus and inhibits Hla-
mediated inflammatory responses (19). Thus, this type of
inhibitory mechanism, as presented here, could facilitate
the development of new and more effective anti-hemolytic
agents.

CONCLUSION

Major finding of this study is direct evidence that the
binding sites of TF3 to the “stem” domain of Hla pri-
marily involve the residues Met113, Thr117, Asn139.
This binding enforces the concomitant change in the
conformation of the “stem” region which is restricted to
this part of Hla only. Outcome of our study imply that
further search and development of inhibitors aimed at
staphylococcal virulence exoproteins could be based on
the agents with TF3-based structure as the inhibitors of
Hla activity.
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